LOWER BOUNDS FOR GENERALIZED UPCROSSINGS OF
ERGODIC AVERAGES

S. E. FERRANDO, P. J. CATUOGNO, AND A. L. GONZALEZ

ABSTRACT. New lower bound inequalities are obtained for generalized upcross-
ings of ergodic averages. Results and techniques are presented in such a way
that the duality with Bishop’s results on upper bounds is emphasized. Fi-
nally, the significance of generalized upcrossings as a mean to count spatial
oscillations is clarified.

1. INTRODUCTION

Upcrossing inequalities (u.i.) are a basic phenomena for ergodic averages, in par-
ticular, they imply the ergodic theorem. Bishop established upper bounds for
(generalized) upcrossings in [2] and [3] by using two different techniques and in a
more general setting than the one of ergodic averages. Our results complement
those of Bishop by proving lower bounds for generalized upcrossings in the setting
of measure preserving transformations and Cesaro averages. The main motivation
to study lower bounds is that they give information on the number of spatial oscil-
lations for the ergodic averages. Lower bounds, in the form of reverse inequalities,
have been studied in [5] but with a different perspective.

We now describe a result in our paper which establishes a strikingly thight inequal-
ity, detailed definitions are presented elsewhere. Let wy o, () denote the number
of generalized upcrossings up to time n with respect to function f and transforma-
tion 7. Set wy, o () = sup,, Wy,a,n (), a constructive result of Bishop implies (using
classical arguments) the following result:

[nwnal@) < [(£-a.

Under appropriate conditions, our Theorem 2 shows,

Jt-a-nis [nu.0.

We remark on the fact that our result, in contrast to Bishop’s, requires wy, o(z) and
it is not possible to obtain a similar result using the finite time quantity wy, o, (z).
The paper is organized as follows, in Section 2 we introduce the main definitions
and proceed to prove the basic counting inequalities. We present new results on
lower bounds along with Bishop’s results on upper bounds (as presented in [3]),
this can be done with few extra efforts and in this way we emphasize the relation-
ship and novelty of our arguments in contrast to the ones of Bishop. Section 3
introduces the concepts and intermediate results needed to integrate the pointwise
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inequalities from Section 2; our main result, Theorem 2, is then proved. Section 4
clarifies and draws connections between generalized upcrossings and other mea-
sures of spatial oscillations. Furthermore, Proposition 2 gives information on the
pointwise asymptotics of generalized upcrossings. For completeness, the brief Sec-
tion 5 states the dual results for downcrossings. Finally, Appendix A states, for the
reader’s convenience, a known result needed in the main text.

2. POINTWISE INEQUALITIES FOR GENERALIZED UPCROSSINGS

We adopt the convention that pointwise inequalities, not containing explicit quan-
tifiers refering to the point x, are valid for all values of z where the quantities
involved are defined. Given our settings, this will imply almost everywhere (a.e.)
on the measure space.

Definition 1. Given an integer n > 0, the sequence P = (s1,t1,.-.,8m,tm) 18
called n-admissible if —1 < 51 < t1 < 893 < tp < ... < 8 <ty < n. We
let |P| = m denote the size of P. The finite set of all n-admissible sequences is
denoted by P". We allow the void sequence P = ) and define |P| = 0 in this case.

Definition 2. Let a_1,a9,...,a, and b_1,bg,...,b, be given real numbers. A
sequence P = (u1,v1,...,un,vn) is called an n-crossing sequence if it is an n-
admissible sequence which satisfies

1 auigbvi7i:17"'7N7

©) Qyuyy <by, i=1,...,N—1.

Thus a crossing sequence is a special kind of admissible sequence. The finite set of
all n-crossing sequences is denoted by Pg'.

For a nonvoid admissible sequence P = (s1,t1,.- ., Sm, tm), we define:
|P|

(2) S(P) =" (b, — as,) -
i=1

If P is void we define S(P) = 0. Let PJ* be the set of n-admissible sequences P;
with S(P;) maximal in P™, i.e. the maximum is taken over P™. Let PJ be the set
of sequences P; in PJ* with |P»| maximal in Pj".
The next lemma is essentially contained in Lemma 6, [3], pp. 234-235, we have
added material needed to prove lower bounds and we re-wrote the lemma to serve
our needs.
Lemma 1. The following two statements hold for any n > 0:
i) P CP§.
@) If P, € Py, then:

|Py| > |P| for all P € Pf.
Proof. i) Let Py = (s1,t1,...,8m,tm) belong to Pj'. If P, ¢ P}, there would exist
t, 1 <4 < m such that a;; > b, or 1 <4 < m — 1 such that a,,,, > b, then

deleting (s;,t;) or (ti,s;+1) from P, we obtain an n-admissible sequence () with
S(Q) > S(Py), which contradicts its maximality. Thus PJ* C Pg.

ii) Let Py = (s1,t1,-.-,8m,tm) belong to P} and P = (uy,v1,...,un,vN) € Py.
It is not possible that there exist i € {1,--- ,N — 1} and j € {1,---,m} such that

(3) s < v; < < t]’,
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otherwise, if (3) holds, P' = (s1,%1,- ., S, Vi, Wit1,tj...Sm, tm) Would be n-admissible
with |P'| = |P»| + 1 and

j—1 m
s(p) = Z (be, = as;) +bo, — as; + by, — auy, + Z (be; —as;) =
k=1 k=j+1

= S(P)+bvz = Quyyy Z S(P),

which contradicts the fact that P € P3.
For convenience set t) = —1 and s;;,+1 = n, with a similar argument, we see that
it is neither possible that, for any i =1,--- , N and any j =0, ---m,

(4) tj <wu; <v; < Sjt1-
Let us note that u; < t,, for all 4 = 1,--- ,N. Thus for each i = 1,--- | N there
exist j = j(i) = 1,--- ,m such that,
u; € [tjfl,tj).
Now if i1 < iy, we have : #;(;,)—1 < u;, and having in mind that (3) and (4) do not
hold
(i) < Viy, and then ;) < wiy.

This shows that the map ¢ — j(¢) is injective, thus N < m. O

We will especialize the general setting just introduced to the following situation: for
a given function (real valued and measurable) f(z), 7 a measurable point transfor-
mation on a measure space (X, F,u) we let f;(z) =17 f(z) = f(r'z) (so fo = f).
Define also Z = {A € F: 77'(A) = A}, A € T is called an invariant subset. We
use the notation A:f(z) = 1/(t + 1) E;ZQ f(riz) and set A f(z) = 0 for all z.
For real numbers a, 1 (n > 0) and given = we especialize the fixed finite sequences
{a;} and {b;} in Definition 2 as follows,

be = bi(@) = bena(@) = 3 (fi (@) —a —1)
=0

J
and

)

as = as(z) = as,0(z) = Z (fi(@) —a).
j=0

Of course, in the expressions above, a sum over a void set has the value 0. In
a natural way we augment the notations introduced earlier by making explicit
reference to the point x and possibly other parameters. For example, if P =
(s1,t1,- -, 8mstm) € P™ we also define S(P)(z) = Y7, (b, (2) — as,(x)), then
Pi(x,n,a) (more compactly, Pi*(z)) are the elements P € P™ such that S(P)(zx)
is maximal. In particular, P especializes to P (x,n,a), an element P of this set
will be called an n-generalized upcrossing sequence at . The reasons for the switch
from the use of crossing to generalized upcrossing is given by Proposition 1 (see also
remarks above Corollary 1) and our use of crossings in Section 5. We will freely
hide some of the parameters (mainly a and 7) whenever possible. The following
notation will be used

(5) Anan(?) = max S(P)(z) = 5(P1)(2),
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where P; is any element in PP (z).
For the rest of the paper, except Section 5, the above conventions and assumptions
will be used freely without necessarily making them explicit.

Definition 3. For given integer n > 0, define the (maximum) number of n-
generalized upcrossings at x by

Wy, a,n(2) = max{|P| : where P is an n-generalized upcrossing sequence at z}.

Also, define the number of generalized upcrossings at & by wy o (x) = limp_s 00 Wy a,n (),
without further restrictions nothing forbids wy () being infinity at this moment.
Our use of the word generalized is in order to distinguish wy o, () from the usual
(geometric) upcrossings from Definition 4.

Lemma 1 implies the following corollary.

Corollary 1.

(6) |P2| = wp,a.n(z) and Xyan(r) = S(P2)(2),
where Py is any sequence in Py (z).

The following lemma is key to obtain Theorem 2 on lower bounds.
Lemma 2. For all n > 1 the following holds:

(7) Anan—1(T2) = Apan(@) < 0 wyan-1(r2) — (f(2) —a —n)4.
Proof. Consider P’ = (s},t,,...,s! ,,# ) € P"~! to be nonempty and let s; =

»9m’ o Ym/

si+1,t; =t +1fori=1,...,m', this defines P = (s1,t1,...,Sm/, tm) € P™ with
s1 > 0. Then

(8) S(P)(rz) —nm' = S(P)(z) < Agam(@) — (f(@) —a—n)4,

the equality in (8) can be checked directly, to argue for the inequality in (8) notice
that if (f(z) —a —n) < 0 the inequality holds. On the other hand, if (f(z) —
a—mn) >0, define Q = (so = —1,t0 = 0,81,%1,...,Sm, tm) € P™ and notice that
S(P)(z) = S(Q)(@) = (f(&) —a—n) < Apan(@) = (fl&) —a—n)4. P =0
equation (8) also holds due to A, o.n(x) > (f(z) — @ —n)4. Therefore, given that

P’ is an arbitrary element of P!, evaluating (8) at P’ € Py '(rz) and using (6)
we obtain

9) Apan—1(TT) = Ap.an(T) <0 wyan-1(17) = (f(T) —a —1n)4,
which is valid for any n > 1. O

The next result complements the previous lemma, it can be found, in a more general
setting, in [3].

Lemma 3.
(10) n wn,a,n(x) S An,a,n—l(rx) - An,a,n(x) + (f(x) - Oé)+.
Proof. Consider P = (s1,t1,...,8m,tm) € P". Now define P' = (s},t},...,s},.,t,.,) €

Prt as follows: if t; >0and m > 1let t, =¢;,—1, sl =s;, —1fori=1,...,m
and m' = m with the understanding that s{ = —1if s; = —1. If t;, =0 and m > 2
take m' =m —land ¢t =t;41 — 1, s, =s;41 —1fori=1,...,m'. Incaset; =0
and m = 1 take P’ = (). We then obtain,

(11) S(P)(z) < S(P')(r2)+(f(z)=a)+—nm < Ay a,n—1(T2) + (f(2)—) 1 —1 m.

Then use Corollary 1 to complete the proof. a
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Let xa(z) denote the characteristic function of a set A.

Lemma 4. For all n > 1 the following holds:

(12)

W,an () < Wr1/m),0n-1(T2) + X{f @) —azn-1/m} (&) X{7(ra)—asn(it1/m)} (@)-

Proof. We start with the following observation: given nonnegative integers u, v,
if byy(z) > ay(z) it follows that b,y ,a141/n)(TT) > ay—1(7x). Next consider
P(z) = {-1 < s1(z) < ti(z) < s2(x) < ... < t(z) < n} € Pi(z,n) with
m = Wy qan(z) (we will supress the z in ¢;(x) and s;(z) when convenient). The
above observation implies,

(13) Wn,an () < Wy+1/n),0,n-1(TT) + X{s1 (2)=—1} ()

Therefore, it is enough to consider s; (z) = —1 for the rest of the proof. To simplify
the notation let A = {f(z) —a>n(l1—1/n)} and B={f(rz) —a <n(l+1/n)}.
Consider the following cases: Case I) when xp(z) = 0. Then, we should have
s2(x) > 2, otherwise, we obtain a contradiction with the upcrossing condition
—E;io(f(v'jm) —a)+ Z;Lo(f(v'jx) —a —mn) > 0. Then define P' = {-1 < s} <
t<sh<...<th, <m—1}byti=t—-1,8, =s;—1fori > 2, s{ =—1and
ty =t —1if E;Zol(f(v'j“m) —a—n(l+4+1/n)) > 0 otherwise let t{ = 0. We claim
that

(14) P' e Py~ (ra,n(1 +1/n)),

and hence in the present case I), (14) will prove (12). Given the observation men-
tioned above and the fact that P € P§(x,n), it follows that in order to check (14)
we only need to see if by, ,(141/n)(72) > 0. But this holds from our choice of #].
Consider now Case II), namely xg(x) = 1, it follows from (13) that it is enough to
consider x 4(z) = 0. We remark that under this condition we have t; (z) > 1, hence
we candefine P’ = {—-1 <] <t} <sh<...<t), <n—1}byt,=1t;—1,s; =s;—1
fori > 2, s} = —1 and t; =t; — 1. We claim that P’ € Py "(rz,n(1 + 1/n)), and
hence the proof of (12) will be complete. From the observation at the beginning of
the proof and the fact that s; = —1 we only need to check if by ,(141/n)(T2) > 0.
But, due to P € P§(z,n) we have the following

(15) 0 < byy y(x) = by y(T2)+f (@) == = by y141/n) (T2)+f(T) —a—n(1+1/n),
hence by, y(141/n)(72) > 0 follows from x4 (z) = 0. O

The following lemma complements Lemma 4.
Lemma 5. Fiz a and n be real numbers (n > 0), then for alln’ <n/2 and n > 1:

(16) wr/’,a,n(m) > wn,a,nfl(’rm) +X{f(‘rm)—a§—77’}(x) X{f(x)—aZn’}(x)'
Proof. We start with the following observation: given —1 < u; < v < ug. If

by,n(T2) > ay, () and by, (Tx) > ay,(Tz), using n’ < n/2, it follows that by, (2) >
Quy+1() and byt1,y (T) > Quyt1(2).

We may assume wy o n—1(72) > 1 all along the proof, then, from Corollary 1
there exists P € Py~ '(rz,n), P = {-1 < s, <t < ... < t, <n-—1} and
m = |P| = wyan-1(77). Also from Lemma 1 part i), P € Py '(rz,n). Define
P={-1<si<th <...<t/, <n}bys,=s;+1,t;=t; +1,i=1,...,m. The
above observation implies P' € P (x,n'), then, due to |P'| = m = wy 4 n-1(72), it
follows that wy o,n (%) > wy,a,n—1 (7). Therefore, to establish (16) we may assume
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x satisfies (f(72z) — @) < —n' and (f(z) — a) > 7’ for the rest of the proof. The
inequality (f(rz) — a) < —n' implies
S1
(17) s1>0and — () (f(r'*a) —a)) > ~(f(rz) —a) > 7',
j=0
To prove the statements in (17), notice that s; = —1 and f(rz) —a — 5 <

—n' — 1 < 0 contradict the fact that P € P '(rz,n). Similarly, the inequal-
ity —(325Lo(f(r7112) — a)) < —(f(rz) — ) is imposible for 5, = 0 and for the
other possible values of s; the inequality contradicts P € P} “(rz,m).

Define now P" = {sp = -1 <t =0 < sf < ¢ < ... <, < n}, notice
that |P"| = |P'| + 1 = wy,q,n—1(7x) + 1; therefore, to finish the proof we should
check that P" € Pl (x,n'). Given that, as indicated earlier, P' € P§(x,n'), and

f(x) —a—n"> 0 we only need to check if —(Z;’lzo(f(ﬂ'm) —a))+ f(z)—a—n">0.
But this follows from (17) as indicated in the following display:

’
s1 51

W <= (fe) —a)) = = (f(T72) — @) + f(2) — o

=0 =0

3. INTEGRAL INEQUALITIES FOR GENERALIZED UPCROSSINGS

The following upper bound can be found in [3].

Theorem 1. Given real numbers o, n (n > 0), T a measure preserving transfor-
mation and A an invariant subset. Then if x4 (f — )y € L*:

(18) [ 1 nate) dute) < [ (@) - ) duto)

Proof. Tt follows by integrating (10) (after multiplication times y4) and noticing
that under our hypothesis x4 (z)\; a,n(z) € L* for all n. O

Lemma 6. Assume T is a measure preserving transformation, f € L' and that
real numbers a,n (n > 0) are given. Then for each x for which (a + 1) >
lim, o0 An(f)(z) the following limit exists as a real number,

(19) nlggo Anan(®)-

Proof. Consider z such that (a + n) > lim, o An(f)(z), we will show first that
there are positive integers t; > to such that

t

(20) Z(f(TJa:) —a—mn) <0forall t >t and
j=0
t s
(21) (f(r7z) —a—n) = (f(r’z) —a) <0forall t > s>ty and
=0 i=o
t to
(22) (f(”'jm)_a—n)SZ(f(ij)—a—n) for all t > t;.
=0 =0
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Let g(z) := lim,—o0o An(f)(z). Take € = min (727, w) and to such that

|Aif(z) — g(x)| < e for all ¢ > to, hence:

g(x) —a—n
2

This proves (20). Let now t > s > to, for convenience set ' = (g(z) — «) and notice

that € < ("—T”’) We consider two cases; first ’ > 0, then:

(23) Aif(z) —a—n<e+glz)—a—n< < 0.

(24) Z(f(Tjw) —a—mn) —_Z(f(f"ﬂ:) —a) <
(n—n')

t—s5)(glx) —a)—Ft+ ) n+(t+s+2)e<

Now consider 1’ < 0 then:
t s

(25) S (friz) —a—n) =Y (f(rz) —a)

Jj=0 Jj=0

2+2t)+ @+ 1)(n' —n) =0.

(t—s)(g(m)—a)—(t-{—l)n+(t+s+2)e<2(t+1)§—(t+1)n:0.

Hence (21) is proven. We now prove (22), define t; = 3 to and take ¢ > ¢; + 1; to
simplify the notation let y = A f(x) —a—nand z = Ay f(z) —a—n. Duetot > tg
we get |y —z| < 2¢€ s0

(26) ly/z| <2 Fl |

Moreover, from |A; f(z) —g(z)| < € we obtain |z| > — e+|g(x)—a—n| > €, where the
last inequality follows from our choice of . Hence (26) gives |y/z| < W +
1 < 3. From (20) we know that y < 0 and z < 0 hence (to +1) y > (¢ + 1) z which
s (22). Equations (21) and (22) prove Ay q,n—1() = Ap,a,n(z) for all n > t; +1
and hence (19) is proven. O

The following lower bound is our main result.

Theorem 2. Assume f € L* and a,n (7 > 0) are given real numbers. Let T be a
measure preserving transformation and A an invariant subset with u(A) < oo, then
if (a+n) > limpeAnf(z) on A:

(27) /A (f(2) — a— )y dpu(z) < /A 0 Wy () du(z).

Proof. We will use the notation g, (z) = (Ay,a,n(2) — Ay,a,n—1(2)) xa(z). One can
check that 0 < g, (z) < (f(7"z) —a—n)+ xalz) <T"(f(z) —a—n)+ xalz). We
show next that h,(z) = T"(f(z) — a — 77)+ xa(z) (with h(z) = ho(z) = (f(z) —
a — 1)+ xa(z)) is a uniformly integrable sequence hence, g,(z) is also uniformly
integrable. Given that there exists a constant a > 0, independent of n, such that
[|hnlli < a||f]l1, to check for uniform integrability it is enough to verify that for all
€ > 0 there exists a constant K, which satisfies [y (hn—Kc)4 dp(z) < e for all n. To
verify this last statement take e > 0 and find K such that [, (h—hAK.) du(z) < €
Then

(28)

/ (hp— Ko)y4 du(z) = / (hp —hn A Ke) du(z) = / (T"h—T"hANK,) du(z) <
b'e X X
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/ Tk — hAK,) d,u(a:):/ (h—hAK.) dul) < e
X X

Multiply (7) by xa(z) and integrate to obtain
(29)

/A (F@)—a—n)s du(z) < /A W a1 (2) 1 dps(z) + /A () =D m1 (7)) dpa(z).

We will use Theorem 5 applied to the uniformly integrable sequence g, (z). Notice
that from Lemma 6 we have limy, o gn () = 0 a.e. on A. Alsolimy, oo [, Wy,an-1(z) =
fA Wy,o(z) because of Lebesgue’s monotone convergence theorem. Hence taking
lim,,—, in (29) and using (51) gives Equation (27). O

Remark 1. The condition a+mn > limy— 00 Anf(z) seems to be needed because we
are dealing with upcrossings, it can be removed once we introduce downcrossings as
we do in Section 5. For the case when T is ergodic and p(X) < oo the condition
becomes (a +n)pu(X) > [y f.

4. GENERALIZED UPCROSSINGS AND SPATIAL OSCILLATIONS

In this section we clarify the geometric meaning of generalized upcrossings. We do
this by establishing some relationships with the usual (geometric) upcrossings and
with oscillations (or jumps).
Definition 4. Upcrossings:

Given a function f(z), an integer n > 0, real numbers a, n > 0 and z € X define

(30) Un,a,n(l') = max{k: : C = (uryvr)TZL...,k.};

where the sequence ( satisfies,

(31) 1<y < <us<...<vp <n
(32) Ay f(z) <a and A, f(z) > (a+n),
for r = 1,...,k. The sequence { will be called an n- upcrossing sequence at x

and the space of these sequences denoted by UJ(z,7n, ). The function U, o(z) =
limy, 00 Uy,a,n(z) will be referred to as the number of upcrossings through the
interval [a, & + 1] (see [3]).

The following simple proposition is a key motivation for the study of upper bounds
for wy q.

Proposition 1. We have U (x,n, o) C Pl (z,n, ), hence:
(33) Upan(®) < wpan(@).

Notice that in general lim,_,o U, o(x) < oo unless, for example, in the ergodic case,
a = [ f. The following Proposition gives information on what happens to wy ()
asn — 0.

Proposition 2. Assume T is an ergodic transformation. For any p > 0 define the
measurable sets Ap oo = {x|liminf, o n? wy o(x) = 0o} then:

(34) 1(Ap,oc) = p(X) or p(Ap) =0,
if, in addition, (f — o)y € L' then for any p > 1
(35) 1(Ap,e0) = 0.
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Proof. Consider p = 0 first and notice that liminf, .o wy o (x) = lim,_o wy,q(z)
in this case. From Lemma 4 and Lemma 5 it follows that 77'4p « = Ao c0,
therefore (34) follows from ergodicity of 7. Consider now p > 0, for each integer
M define the sets A,y = {z|liminf, ,on? wy(z) > M}. From Lemma 4 and
Lemma 5 it follows that

(36) Apnr ST (Ap ) C Ap arjon-

Notice that for any k A, = N35_, Ap mr, hence (36) gives Ay C 771 A, 0 C
Ap . This proves A,  is an invariant subset, therefore (34) follows from ergodicity
of 7. To prove (35) we just need to consider p = 1, assume u(A4; ) = p(X), ap-
plying Fatou’s theorem to (18) and to the invariant set A = 4; o in that equation,
we obtain liminf, ., nwy, o (z) < oo a.e., hence p(A; o) =0. a

Remark 2. From the above proposition and Theorem 2 it is natural to expect
that under rather general conditions we may actually have p(A4, ) = u(X) for
0<p<1.

Definition 5. Jumps:
Given a function f(z), a fixed integer n > 0, a real number > 0 and z € X, define
Ipn(@) =max{k: & = (t;)r=0,... k}

where ¢ satisfies:

“1<ty<ti <ty <...<t,<n
and
(37) |As, o f(x) = Ag f(x)| >m, forallr=0,...,k—1.
Also define
JIp(x) = sup{Jy,n(z) : n > 0}
the function J, will be referred to as the number of n-jumps.

Taken together, the proof of item (3) in the next lemma and Proposition 1 give a
rather complete picture of the geometric meaning of generalized upcrossings.
Lemma 7. For given real numbers a,n (n > 0) and integer n > 0 we have:
(1) If P = (s1,t1 -, Smytm) € Pi(x) then t; < siy1 fori=1,...,m —1.
(2) wn,a,n+1(2) = Wy,an(T) o Wyant1(x) = Wyan(@) + 1.
(3) If P = (s1,t1.-.,Sm,tm) € Pg(x) with m = wy qn(x) then there ezists a
sequence —1 < 0y <0, <0y <...< 8, <ty such that

(38) | A, f(z) — Ag, f(z)] > g foralli=0,...,m—1.
Proof. (1) If there exists ¢ such that t; = s;11 we have that b;, — a5, = —(t; +
1)n < 0.

(2) We suppose that wy qnt1(2) > wyan(®). Let P = (s1,t1...,8p,t,) €
Pyt (z). From Lemma 1 (si1,t1...,8, 1,t,—1) € PP(z) and wy q,n(z) >
r—1.

(3) We will prove it by induction on n, by the previous item we may assume
Wyan(T) = wypan—1(x) +1 =m. Let P = (s1,t1,...,8m,tm) € Pi(z),
this implies

(39) b, (x) —as, (x) >0fori=1,...,m
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and
(40) by, (x) — ag,p, (x) >0fori=1,...,m—1.

We will first prove that As, , f(z)—As,, f(x) >nor Ay, f(x)—As,, f(x) >
7. To this end we first assume A, f(z) > aand A;,,_, f(x)—As,, f(x) <,
we then have :

(41) 0> tm-1 (A, f(2) = —n) —tm-1(4s, f(z) —a) >
tm—1(At,,  f(2) —a =n) = sm(4s,, f(2) =) = bp,,_, (¥) = a,,,(2)

which contradicts (40).
Now, we assume A;_ f(z) < a and A, f(x) — As,, f(z) <n, so:
(42) 0> tm(As, f(7) —a—n) —tm(As,, f(z) —a) >
tm(As,, f(x) — a—n) — sm(4s,, f(z) —a) = b, (z) — as,, (z)

which contradicts (39).
Since (s1,t1,--,8m_1,tm_1) € Py *(z), by inductive hypothesis, there
exists a sequence —1 < 0y < 01 < Oy < ... < Op—1 < ty—1 such that (38)
holds. We need now to define 6,,, it is enough to study the following two
cases. i) Ag,,_,f(x) — As,, f(z) > n : then if 0,1 = t,;,—1 we take 6, =
Sm < tm. Consider then 8,1 < tm_1. Now if |A¢, , f(z) — Ap,,_, f(z)] <
7 it follows that |Ag,, , f(z) — A, f(x)| > § so we can set again 6, =
Sm. Otherwise, if |4,  f(z) — Aq,,_, f(x)] > T we take O, = t,,, 1. ii)
Ay, f(x) — A, f(x) > n : consider then |4, f(z) — Ay, _, f(z)| < § in
which case |A;,, f(x) — Ag,,_, f(x)] > £, clearly §,,_1 < s, hence we can
take 0, = Sy <t If |4y, f(2) — Ao, f(x)] > F we take 0, = tp,.

g

The following corollary, which follows from item (3) in Lemma 7, permits to transfer
all of our lower bound inequalities for wy o ,(x) to lower bound inequalities for
Jp.n(z). From results in [4] it is expected that the so obtained inequalities will not
be tight in general.
Corollary 2.

sup (wny,a,0(7)) < Jyo(),

sup (wy,a,n(2)) < Jy n(x) for alln' <n/2 and n > 1.

5. INTEGRAL INEQUALITIES FOR GENERALIZED DOWNCROSSINGS

Given our techniques, it turns out to be relevant to consider generalized downcross-
ings. They can easily be related to previous introduced quantities and to geometric
downcrossings but we will not need to spell out those relationships here.

For real numbers «, n (n > 0) and given x we especialize the given sequences {a;}
and {b;} in Definition 2 as follows,

b =bi(x) = b o (2) = = D (fi(2) — @)
j=0
and

)

as = ag(m) = ag,n,a(x) = - Z (f](m) —a— 77) .

Jj=0
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The set P§ in Definition 2 especializes to the set of n-generalized downcrossing
sequences denoted by Pj(z,n, a).
For a nonvoid admissible sequence P = (s1,t1,...,8m,tm), we define:

P

(44) Sa(P)(z) = Y (b, (2) — af, (2)) .

i=1

Let Py () be the set of n-admissible sequences P with Sy(P)(z) maximal in P".
Let P ,(z) be the set of sequences P in P}, (z) with |P| maximal. Similarly as we
did for upcrossings we introduce the following notation for generalized downcross-
ings.

Definition 6. For given integer n > 0, we define

(45) M (@) = max Sa(P)(z) = Su(P1)(x),
where Py is any element in P}, (z). The (maximum) number of n-generalized down-
crossings at x is given by:

(46)
d

ma.n(®) = max{|P| : where P is an n-generalized downcrossing sequence at x}.

Also, define the number of generalized downcrossings at « by wf () = limp 00 w , ,, ().

With the above definitions Lemma 1 is inmediately applicable. Analogous results
to Corollary 1, Lemma 2 and Lemma 3 can be obtained for the quantities defined
above. Finally, we have the following dual theorems for generalized downcrossings.

Theorem 3. Assume x4 (a+n— f)y+ € L, where A is an invariant subset with
respect to T, a measure preserving transformation. If o, n (n > 0) are given real
numbers then:

d — X X).
(47) /A 0wl (z) duz) < /A (a+1— F(2)+ dule)

Theorem 4. Assume f € L' and a,n (7 > 0) are given real numbers. Let T be a
measure preserving transformation and A an invariant subset with u(A) < oo, then
if (a+n) <limpsooAnf(z) on A:

(48) [ = 1@ dut@) < [ 0wt ole) duto).

By combining the results for generalized downcrossings and upcrossings we can
remove the hypothesis on . To do this define m, o () = max (wl ,(z), wy.q(z)).

To simplify the hypothesis of the next corollary we will take X to have finite
measure.

Corollary 3. Let f € L', u(X) < oo, a,n real numbers (n > 0). If T is a measure
preserving transformation and A an invariant set, then:

(19) min </A(f—a—n)+,/A(a—f)+> < [
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APPENDIX A. BACKGROUND MATERIAL

Here we mention a known result used in the paper, it is an extension of Lebesgue’s
dominated convergence theorem in the setting of uniformly integrable functions.

Definition 7. A sequence of measurable functions g, in a finite measure space
(A, ) is said to be uniformly integrable if:

(50) / lgn| du — 0 as ¢ — oo, uniformly in n.
{lgnl>c}

Theorem 5. In the above setting we have (see [1] pg. 295): If gn(z) — g(z) a-e.
then g is integrable and:

(51) / lim g, dp= lim / gn di

A n—oo n—oo A
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